echoflow package¶
Top-level package for EchoFlow.
-
class
echoflow.
EchoFlow
(lr: float = 0.0001, nb_epochs: int = 1000, batch_size: int = 100, nb_blocks: int = 3, block_type: str = 'RNVP', use_kde: bool = False)[source]¶ Bases:
object
Wrapper for training normalizing flow models.
-
fit
(df: pandas.core.frame.DataFrame, context: Optional[pandas.core.frame.DataFrame] = None)[source]¶ Fit the flow model.
- Parameters
df – The dataframe containing the samples to model.
contexts – The (optional) context dataframe for conditional sampling.
-
log_likelihood
(df: pandas.core.frame.DataFrame, context: Optional[pandas.core.frame.DataFrame] = None)[source]¶ Compute the log-likelihood of the data.
- Parameters
df – The dataframe containing the samples to model.
contexts – The (optional) context dataframe. If it was provided in the fit method, it must be provided here as well.
-
sample
(num_samples: Optional[int] = None, context: Optional[pandas.core.frame.DataFrame] = None) → pandas.core.frame.DataFrame[source]¶ Generate samples via the inverse transform.
Either num_samples or contexts must be provided. If both are provided, then they must be consistent (i.e. there are num_samples rows in contexts).
- Parameters
num_samples – The number of samples.
contexts – The (optional) context dataframe for conditional sampling.
-
Subpackages¶
Submodules¶
echoflow.echoflow module¶
-
class
echoflow.echoflow.
EchoFlow
(lr: float = 0.0001, nb_epochs: int = 1000, batch_size: int = 100, nb_blocks: int = 3, block_type: str = 'RNVP', use_kde: bool = False)[source]¶ Bases:
object
Wrapper for training normalizing flow models.
-
fit
(df: pandas.core.frame.DataFrame, context: Optional[pandas.core.frame.DataFrame] = None)[source]¶ Fit the flow model.
- Parameters
df – The dataframe containing the samples to model.
contexts – The (optional) context dataframe for conditional sampling.
-
log_likelihood
(df: pandas.core.frame.DataFrame, context: Optional[pandas.core.frame.DataFrame] = None)[source]¶ Compute the log-likelihood of the data.
- Parameters
df – The dataframe containing the samples to model.
contexts – The (optional) context dataframe. If it was provided in the fit method, it must be provided here as well.
-
sample
(num_samples: Optional[int] = None, context: Optional[pandas.core.frame.DataFrame] = None) → pandas.core.frame.DataFrame[source]¶ Generate samples via the inverse transform.
Either num_samples or contexts must be provided. If both are provided, then they must be consistent (i.e. there are num_samples rows in contexts).
- Parameters
num_samples – The number of samples.
contexts – The (optional) context dataframe for conditional sampling.
-
echoflow.transformer module¶
-
class
echoflow.transformer.
KDETransformer
[source]¶ Bases:
object
Probability integral transform via KDE.
-
class
echoflow.transformer.
SplitTransformer
(use_kde)[source]¶ Bases:
object
-
fit_transform
(df: pandas.core.frame.DataFrame) → Tuple[Optional[torch.Tensor], Optional[torch.Tensor]][source]¶
-
-
class
echoflow.transformer.
TableTransformer
(use_kde)[source]¶ Bases:
object
Transform a dataframe into a tensor.
-
dims
= 0¶
-
fit_transform
(df: pandas.core.frame.DataFrame) → torch.Tensor[source]¶ Fit and transform a dataframe into a tensor.
Continuous values are normalized to the [0.0, 1.0] range and categorical values are converted into a one-hot representation.
- Parameters
df – The dataframe containing continuous and categorical values.
- Returns
A tensor representation of the data.
- Return type
torch.Tensor
-